An easy way to get a hang of 3D homogeneous coordinates (which consist of 4 coordinates) is to see them as a higher dimension analogue to fractions.
- A fraction $a/b$ represents a number on the 1D real axis, but really consists of 2 "coordinates", ie. (a,b). In a similar way, the 3D vector (x/w,y/w,z/w) corresponds to the 4D homogeneous vector (x,y,z,w).
- Just as with fractions, multiplying all components by the same value doesn't change its value, ie. a/b = (sa)/(sb), or in coordinate form (a,b) = (sa,sb), for some scalar s. Similarly, since (x/w,y/w,z/w) = ((sx)/(sw),(sy)/(sw),(sz)/(sw)), the homogeneous vectors (x,y,z,w) and (sx,sy,sz,sw) are considered the same vector.
And then it just so happens that many operations on 3D vectors can be done much more elegantly on their homogeneous representation, most importantly, transformations like translation and projection become representable by just a matrix. Since for a 4x4 matrix a 4D vector and a scalar s, A(sx) = s(Ax), multiplying a homogeneous vector by a matrix is well defined, ie. if two vectors are equivalent (they represent the same 3D point, even while their 4D representation may be different), they will still be equivalent after they're multiplied with a matrix.