I started this port after reading "Practical Rendering & Computation with Direct3D11" and thought it would be a good first project to start applying what I had learned from that book. From reading it and from using XNA on previous projects, I knew I wanted to create an interface layer to hide most of the details of D3D11 from the application, which is where the d3d11_framework project (also included below) came from. It is a partial recreation of the XNA framework in C++, though is comparatively in very rough shape. It also takes into account the differences between D3D9/XNA and D3D11, such as using xnamath.h and passing a ID3D11DeviceContext* to the rendering functions so that multithreaded rendering is possible, though the creation of deferred contexts is currently not implemented. The current form is good enough to get through a sample project (a port of tutorial 7 from the D3D11 samples included in the June 2010 SDK, to which I added instance rendering) and the particle system rendering. My plan for my next project is some cleanup work and expansion of the framework, including pushing parts of the particle system port to the framework. I already have a laundry list of tasks that is sure to grow. I had thought about a compute shader version of the particle system, but I'm going to hold off on that at least for now.
In the course of working on this project, I'm pretty sure I made every newbie mistake:
- Using XMVECTOR and XMMATRIX in dynamically allocated types, which lead to access violations when changing them since they may not be properly aligned. So, now I use them only during calculations and store the result in XMFLOAT3/XMFLOAT4 or XMFLOAT4X4.
- Missing that the order of the arguments to XMMatrixRotationRollPitchYaw(pitch, yaw, roll) is different than XNA (yaw, pitch, roll) and different than its function name (roll, pitch, yaw)
- Constant buffers bound to the vertex shader stage are not automatically bound to the pixel shader stage (not sure if this is just XNA that does this or if it's D3D9)
- For the layout description, having both aligned byte offsets for the instance entries set to 0 (one of the things on my to-do list for the framework is to look into making creating the layout description less error prone)
In addition to that, while creating the C++ port, it made me wonder why I made the C# editor and XNA renderer multithreaded. The C++ version is completely single threaded, since there really is no need for multithreading. The best answer I can come up with for why the C# versions have multithreading is that C# makes it easy.
d3d11_framework:
particle system renderer:
Where are the screen shots??? That is the best part of posting a sample - being able to show off what you have achieved :)