OpenCL is a cross-platform framework used mostly for GPGPU (General-purpose computing on graphics processing units). There are plenty of tutorials available on image processing with OpenCL using C/C++, however there's not much information that would cover OpenCL image processing with .NET.
I won't go into details about OpenCL kernels/queues/etc. (there's plenty of information available on the internet), however I'll provide you with a bare minimum code required to load an image from disk, process it with OpenCL on the GPU and save it back to a file.
Before we get started, make sure that you download the source code of OpenCL.NET from
http://openclnet.codeplex.com/ and add it to your project.
We'll use a simple OpenCL kernel that converts an input image into a grayscale image. The kernel should be saved to a separate file.
Kernel source code:
__kernel void imagingTest(__read_only image2d_t srcImg,
__write_only image2d_t dstImg)
{
const sampler_t smp = CLK_NORMALIZED_COORDS_FALSE | //Natural coordinates
CLK_ADDRESS_CLAMP_TO_EDGE | //Clamp to zeros
CLK_FILTER_LINEAR;
int2 coord = (int2)(get_global_id(0), get_global_id(1));
uint4 bgra = read_imageui(srcImg, smp, coord); //The byte order is BGRA
float4 bgrafloat = convert_float4(bgra) / 255.0f; //Convert to normalized [0..1] float
//Convert RGB to luminance (make the image grayscale).
float luminance = sqrt(0.241f * bgrafloat.z * bgrafloat.z + 0.691f * bgrafloat.y * bgrafloat.y + 0.068f * bgrafloat.x * bgrafloat.x);
bgra.x = bgra.y = bgra.z = (uint) (luminance * 255.0f);
bgra.w = 255;
write_imageui(dstImg, coord, bgra);
}
Namespaces Used
using System;
using System.Collections;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Runtime.InteropServices;
using OpenCL.Net;
Error handling
Since OpenCL.NET is a wrapper for C API, we'll have to do all the error checking on our own. I'm using the following two methods:
private void CheckErr(Cl.ErrorCode err, string name)
{
if (err != Cl.ErrorCode.Success) {
Console.WriteLine("ERROR: " + name + " (" + err.ToString() + ")");
}
}
private void ContextNotify(string errInfo, byte[] data, IntPtr cb, IntPtr userData) {
Console.WriteLine("OpenCL Notification: " + errInfo);
}
Setting Up
The following two variables should be declared in the class itself and will be shared across all of the methods:
private Cl.Context _context;
private Cl.Device _device;
And this is the method that sets up OpenCL:
private void Setup ()
{
Cl.ErrorCode error;
Cl.Platform[] platforms = Cl.GetPlatformIDs (out error);
List devicesList = new List ();
CheckErr (error, "Cl.GetPlatformIDs");
foreach (Cl.Platform platform in platforms) {
string platformName = Cl.GetPlatformInfo (platform, Cl.PlatformInfo.Name, out error).ToString ();
Console.WriteLine ("Platform: " + platformName);
CheckErr (error, "Cl.GetPlatformInfo");
//We will be looking only for GPU devices
foreach (Cl.Device device in Cl.GetDeviceIDs(platform, Cl.DeviceType.Gpu, out error)) {
CheckErr (error, "Cl.GetDeviceIDs");
Console.WriteLine ("Device: " + device.ToString ());
devicesList.Add (device);
}
}
if (devicesList.Count <= 0) {
Console.WriteLine ("No devices found.");
return;
}
_device = devicesList[0];
if (Cl.GetDeviceInfo(_device, Cl.DeviceInfo.ImageSupport, out error).CastTo() == Cl.Bool.False)
{
Console.WriteLine("No image support.");
return;
}
_context = Cl.CreateContext(null, 1, new[] { _device }, ContextNotify, IntPtr.Zero, out error); //Second parameter is amount of devices
CheckErr(error, "Cl.CreateContext");
}
The Image Processing Part
The main problem is that OpenCL.NET is a wrapper around C API of OpenCL, so it can only work with unmanaged memory. However, all of the data in .NET is managed, so we'll have to marshal the data between managed/unmanaged memory. Usually it would be much easier to handle the RGBA color components in float [0..1] space. However, the input image should be in byte[] array, because it would really affect the performance to do the byte=>float conversion on the CPU (we would have to divide each component by 255 for every pixel of the image twice - once before the image processing and once after).
public void ImagingTest (string inputImagePath, string outputImagePath)
{
Cl.ErrorCode error;
//Load and compile kernel source code.
string programPath = Environment.CurrentDirectory + "/../../ImagingTest.cl"; //The path to the source file may vary
if (!System.IO.File.Exists (programPath)) {
Console.WriteLine ("Program doesn't exist at path " + programPath);
return;
}
string programSource = System.IO.File.ReadAllText (programPath);
using (Cl.Program program = Cl.CreateProgramWithSource(_context, 1, new[] { programSource }, null, out error)) {
CheckErr(error, "Cl.CreateProgramWithSource");
//Compile kernel source
error = Cl.BuildProgram (program, 1, new[] { _device }, string.Empty, null, IntPtr.Zero);
CheckErr(error, "Cl.BuildProgram");
//Check for any compilation errors
if (Cl.GetProgramBuildInfo (program, _device, Cl.ProgramBuildInfo.Status, out error).CastTo()
!= Cl.BuildStatus.Success) {
CheckErr(error, "Cl.GetProgramBuildInfo");
Console.WriteLine("Cl.GetProgramBuildInfo != Success");
Console.WriteLine(Cl.GetProgramBuildInfo(program, _device, Cl.ProgramBuildInfo.Log, out error));
return;
}
//Create the required kernel (entry function)
Cl.Kernel kernel = Cl.CreateKernel(program, "imagingTest", out error);
CheckErr(error, "Cl.CreateKernel");
int intPtrSize = 0;
intPtrSize = Marshal.SizeOf(typeof(IntPtr));
//Image's RGBA data converted to an unmanaged[] array
byte[] inputByteArray;
//OpenCL memory buffer that will keep our image's byte[] data.
Cl.Mem inputImage2DBuffer;
Cl.ImageFormat clImageFormat = new Cl.ImageFormat(Cl.ChannelOrder.RGBA, Cl.ChannelType.Unsigned_Int8);
int inputImgWidth, inputImgHeight;
int inputImgBytesSize;
int inputImgStride;
//Try loading the input image
using (FileStream imageFileStream = new FileStream(inputImagePath, FileMode.Open) ) {
System.Drawing.Image inputImage = System.Drawing.Image.FromStream( imageFileStream );
if (inputImage == null) {
Console.WriteLine("Unable to load input image");
return;
}
inputImgWidth = inputImage.Width;
inputImgHeight = inputImage.Height;
System.Drawing.Bitmap bmpImage = new System.Drawing.Bitmap(inputImage);
//Get raw pixel data of the bitmap
//The format should match the format of clImageFormat
BitmapData bitmapData = bmpImage.LockBits( new Rectangle(0, 0, bmpImage.Width, bmpImage.Height),
ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb);//inputImage.PixelFormat);
inputImgStride = bitmapData.Stride;
inputImgBytesSize = bitmapData.Stride * bitmapData.Height;
//Copy the raw bitmap data to an unmanaged byte[] array
inputByteArray = new byte[inputImgBytesSize];
Marshal.Copy(bitmapData.Scan0, inputByteArray, 0, inputImgBytesSize);
//Allocate OpenCL image memory buffer
inputImage2DBuffer = Cl.CreateImage2D(_context, Cl.MemFlags.CopyHostPtr | Cl.MemFlags.ReadOnly, clImageFormat,
(IntPtr)bitmapData.Width, (IntPtr)bitmapData.Height,
(IntPtr)0, inputByteArray, out error);
CheckErr(error, "Cl.CreateImage2D input");
}
//Unmanaged output image's raw RGBA byte[] array
byte[] outputByteArray = new byte[inputImgBytesSize];
//Allocate OpenCL image memory buffer
Cl.Mem outputImage2DBuffer = Cl.CreateImage2D(_context, Cl.MemFlags.CopyHostPtr | Cl.MemFlags.WriteOnly, clImageFormat,
(IntPtr)inputImgWidth, (IntPtr)inputImgHeight, (IntPtr)0, outputByteArray, out error);
CheckErr(error, "Cl.CreateImage2D output");
//Pass the memory buffers to our kernel function
error = Cl.SetKernelArg(kernel, 0, (IntPtr)intPtrSize, inputImage2DBuffer);
error |= Cl.SetKernelArg(kernel, 1, (IntPtr)intPtrSize, outputImage2DBuffer);
CheckErr(error, "Cl.SetKernelArg");
//Create a command queue, where all of the commands for execution will be added
Cl.CommandQueue cmdQueue = Cl.CreateCommandQueue(_context, _device, (Cl.CommandQueueProperties)0, out error);
CheckErr(error, "Cl.CreateCommandQueue");
Cl.Event clevent;
//Copy input image from the host to the GPU.
IntPtr[] originPtr = new IntPtr[] { (IntPtr)0, (IntPtr)0, (IntPtr)0 }; //x, y, z
IntPtr[] regionPtr = new IntPtr[] { (IntPtr)inputImgWidth, (IntPtr)inputImgHeight, (IntPtr)1 }; //x, y, z
IntPtr[] workGroupSizePtr = new IntPtr[] { (IntPtr)inputImgWidth, (IntPtr)inputImgHeight, (IntPtr)1 };
error = Cl.EnqueueWriteImage(cmdQueue, inputImage2DBuffer, Cl.Bool.True, originPtr, regionPtr, (IntPtr)0, (IntPtr)0, inputByteArray, 0, null, out clevent);
CheckErr(error, "Cl.EnqueueWriteImage");
//Execute our kernel (OpenCL code)
error = Cl.EnqueueNDRangeKernel(cmdQueue, kernel, 2, null, workGroupSizePtr, null, 0, null, out clevent);
CheckErr(error, "Cl.EnqueueNDRangeKernel");
//Wait for completion of all calculations on the GPU.
error = Cl.Finish(cmdQueue);
CheckErr(error, "Cl.Finish");
//Read the processed image from GPU to raw RGBA data byte[] array
error = Cl.EnqueueReadImage(cmdQueue, outputImage2DBuffer, Cl.Bool.True, originPtr, regionPtr,
(IntPtr)0, (IntPtr)0, outputByteArray, 0, null, out clevent);
CheckErr(error, "Cl.clEnqueueReadImage");
//Clean up memory
Cl.ReleaseKernel(kernel);
Cl.ReleaseCommandQueue(cmdQueue);
Cl.ReleaseMemObject(inputImage2DBuffer);
Cl.ReleaseMemObject(outputImage2DBuffer);
//Get a pointer to our unmanaged output byte[] array
GCHandle pinnedOutputArray = GCHandle.Alloc(outputByteArray, GCHandleType.Pinned);
IntPtr outputBmpPointer = pinnedOutputArray.AddrOfPinnedObject();
//Create a new bitmap with processed data and save it to a file.
Bitmap outputBitmap = new Bitmap(inputImgWidth, inputImgHeight, inputImgStride, PixelFormat.Format32bppArgb, outputBmpPointer);
outputBitmap.Save(outputImagePath, System.Drawing.Imaging.ImageFormat.Png);
pinnedOutputArray.Free();
}
}
Now you should have a good foundation for more complex image processing effects on the GPU.
Thx for your share.I am doing image processing using C#.NET ,and I am not quite familiar with OpenCL.If you could provide me some available source codes inC#.NET ,it well be highly appreciated.AND I have tried trival [url=http://www.rasteredge.com/how-to/csharp-imaging/imaging-processing/]image pocessing component[/url],I just need more without spending money.
best regards